The Trimble AP+Air GNSS-inertial system is comprised of next-generation compact, low-power hardware, featuring dual embedded survey-grade GNSS chipsets, an onboard inertial measurement unit (IMU), an external IMU, and the all-new Applanix IN-Fusion+ GNSS-aided inertial firmware.

INTEGRATE ONCE, USE MANY

The “Integrate once, use many” concept means a single hardware platform can be used to build a complete range of mapping payloads, from UAV to crewed aircraft, using the same design. This consistency saves costs associated with design and integration.

The Trimble AP+Air is configurable to support the Direct Georeferencing accuracy demands of everything from low-flying UAVs to high-altitude crewed platforms. Compatible with photogrammetric cameras, LiDAR, hyperspectral and multispectral cameras, Synthetic Aperture Radar and virtually any other type of airborne remote sensor, the Trimble AP+Air is a powerful, compact, and versatile solution. Easily integrated with any type of platform, AP+Air saves significant costs in all types of surveys.

THE BEST SOLUTION JUST GOT BETTER

The Trimble AP+Air OEM solution is fully supported by the industry-leading Applanix POSPac MMS post-processing software, featuring Post-Processed Trimble CenterPoint® RTX™ for centimeter position accuracy without base stations, making it the ultimate solution for integrators wishing to produce a highly efficient airborne mapping system. For LiDAR integrators, the Trimble AP+Air OEM is fully compatible with the POSPac MMS LiDAR QC Tools for UAV.

Key Features

- “Integrate once, use many” concept means a single platform can be used to build a complete range of mapping payloads, from UAV to crew operated aircraft, using the same design, which saves costs.
- Reduced SWaP
 - 54% smaller footprint, 64% lighter, 75% less power
- Next generation, survey-grade GNSS receiver
- Dual inertial support (onboard and external) for simple gimbal mount support
- Two antenna heading support
- Next generation In-Fusion+Aided-Inertial Firmware
- Completely configurable, from entry-level UAV applications, all the way up to high-accuracy solutions for high altitude LiDAR mapping
DATASHEET

TECHNICAL SPECIFICATIONS

System Summary
-

GNSS
- L1 C/A, L2C, L2E, L5
- 0.025
- RTX

Temperature
- -40 to +85
- 0.100
- Range

GLONASS
- L1 C/A, L2 C/A, L3
- 0.07
- 1.5 H
- 0.025
- Power

BeiDou
- B3
- Galileo:
 - E1, E5A, E5B, E5AltBOC, E6
- IRNSS: L5
- QZSS: L1 C/A, L5, L1C, L2C, L2E
- SBAS: L1 C/A, L5
- MSS L-Band: Trimeble RTX
- 0.050
- 0.050
- Galileo

QZSS
- L1 C/A, L1S, L1C, L2C
- L4B, 3B3
- 0.060
- 5 to 30 VDC

GNSS-inertial integration technology
- Size (L x W x H) mm
- n/a

SBAS
- L1 C/A, L5
- Post-Processed
- Post-Processed
- 0.050
- n/a
- 0.050

Galileo
- 6
- 0.010
- 0.060

**Specifications subject to change without notice.

PHYSICAL CHARACTERISTICS

Size
- 100 x 60 x 21 mm

Weight
- 100 g

Power
- 7W max, 8-34V DC or 3.3V DC

Connectors
- Samtec LSHM-340-030-L-DV-A-N

Antenna Port
- 2 x MIMX receptacle

Output Voltage:
- Primary 75 VDC
- Secondary 5 VDC
- Maximum Current: 400 mA
- Minimum Input Signal Strength: 32 dB (>35 dB recommended)

ENVIRONMENTAL CHARACTERISTICS

Temperature
- -40°C to +75°C (Operational)
- -55°C to +85°C (Storage)

GNSS Operating Limit
- 515 m/sec, 18,000 m

ADDITIONAL ACCESSORIES

Evaluation Kit
- Includes development board, power supply, and short antenna cables (sold separately)

INERTIAL MEASUREMENT UNITS (IMUS)

Type
- Range
- Temp °C (Operational)
- Power
- Size (L x W x H) mm
- Weight (g)

Internal Onboard IMU-79
- +/-6 g
- +/-350 dps
- -40 to +75
- n/a
- n/a
- n/a

External IMU-90
- +/-30 g
- +/-950 dps
- -40 to +85
- 5 to 30 VDC
- 1.8W max
- 39 x 42 x 22
- 0.07

PERFORMANCE SPECIFICATIONS

Absolute Accuracy Specifications

<table>
<thead>
<tr>
<th>Airborne Application</th>
<th>SPS</th>
<th>SBAS</th>
<th>RTX</th>
<th>Post-Processed SPS</th>
<th>Post-Processed RTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position (m)</td>
<td>1.5 H</td>
<td>0.50 H</td>
<td>0.04 H</td>
<td>0.03 H</td>
<td>0.02 H</td>
</tr>
<tr>
<td>Velocity (m/s)</td>
<td>0.050</td>
<td>0.050</td>
<td>0.030</td>
<td>0.010</td>
<td>0.030</td>
</tr>
<tr>
<td>Roll & Pitch (deg)</td>
<td>0.30</td>
<td>0.025</td>
<td>0.025</td>
<td>0.015</td>
<td>0.025</td>
</tr>
<tr>
<td>True Heading (deg)</td>
<td>0.100</td>
<td>0.080</td>
<td>0.060</td>
<td>0.035</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Notes
1. Typical performance. Actual results are dependent upon satellite configuration, atmospheric conditions and other environmental effects.
2. Typical mission profile. MAX RMS error (GAMS not required).
3. Real-time Trimble CenterPoint™ correction service. Typical airborne results, subject to regional coverage. Subscription sold separately, requires RTK license.
4. POSPac MMS, Single Base station or SmartBase.
5. POSPac MMS, Post-Processed CenterPoint™. Typical mission performance subscription sold separately. The accuracy is subject to quality of GNSS data set duration, and regional coverage.
6. There is no official GLONASS L3CDMA or Galileo E6 ICD. The current tracking capability is based on publicly available information. Full receiver compatibility cannot be guaranteed.
7. Developed under a License of the European Union and the European Space Agency.
8. The hardware of this product is designed for BeiDou B3 compatibility (trial version) and its firmware will be enhanced to fully support such new signal as soon as officially published ICD becomes available.
9. Does not include external IMU.
10. Performance based upon external IMU.
11. Subject to regional coverage.